Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Optimizing the fabrication process for excellent mechanical properties in stoichiometric SiC fiber/FCVI SiC matrix composites

Taguchi, Tomitsugu; Igawa, Naoki; Jitsukawa, Shiro; Nozawa, Takashi*; Kato, Yudai*; Koyama, Akira*; Snead, L. L.*; McLaughlin, J. C.*

Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems; Ceramic Transactions Vol. 144, p.69 - 76, 2002/00

Process optimization for Forced-thermal gradient Chemical Vapor Infiltration (FCVI) fabrication of 75 mm diameter size SiC composites with advanced SiC fibers; Hi-Nicalon Type S and Tyranno SA, was carried out. The SiC/SiC composites fabricated by FCVI exhibited significant reduction in porosity (15.1%) and more uniform pore distribution by decreasing the MTS and H$$_{2}$$ gases flow rates in the latter part of the FCVI process. The tensile strength of the both composites using Hi-Nicalon Type S or Tyranno SA fibers was slightly increased with increased thickness of carbon interphase in the range of 75-300 nm. In order to perform the comparative testing required to directly compare the thermomechanical property changes following neutron irradiation, larger composites with uniform microstructural property are required. From the results of process optimization for fabrication of 75 mm diameter size FCVI SiC/SiC composites, the definitive purpose in this study is the fabrication of the 300 mm diameter size SiC/SiC composite with the uniform microstructural properties.

1 (Records 1-1 displayed on this page)
  • 1